If it's not what You are looking for type in the equation solver your own equation and let us solve it.
w^2+5w-2=0
a = 1; b = 5; c = -2;
Δ = b2-4ac
Δ = 52-4·1·(-2)
Δ = 33
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$w_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$w_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$w_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(5)-\sqrt{33}}{2*1}=\frac{-5-\sqrt{33}}{2} $$w_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(5)+\sqrt{33}}{2*1}=\frac{-5+\sqrt{33}}{2} $
| 9−r=-2r | | 3x+5=x×15 | | 19.97-11.3d=-15.2d-19.81 | | 10-2y=-5-50 | | -6w-17+1=20-2w | | 5*b-4.7=5 | | .75x+1.5=9 | | 3v-50=v | | -5=2=a | | 5/20=8x | | 7(t+10)=7t+70 | | v+26=2v+21 | | 73=8n | | s+80=12s-30 | | h+6=-4 | | 8(t+2)=8t+16 | | (X1)(x+3)=0 | | 3r+2r=9 | | 7p+41=8p+40 | | 6+-5x+2=4x+5 | | 6u=10u-32 | | 12b+(-4b)+5=13 | | 3p+19=5p-1 | | 6x+216=4x+118 | | (v^2+4v-5)(6v-18)=0 | | 4(4p+2)=2(8p+4) | | 2p+23=6p-81 | | 5t-85=2t-31 | | x+4/10=1/5+x-8/2 | | 2a=7a-70 | | -3/5=y+6 | | 4a-71=2a-15 |